Copied to
clipboard

G = C62.43C23order 288 = 25·32

38th non-split extension by C62 of C23 acting via C23/C2=C22

metabelian, supersoluble, monomial

Aliases: C62.43C23, C6.8(S3×Q8), C3⋊Dic36Q8, C326(C4⋊Q8), (C3×C12).80D4, (C2×C12).135D6, (C2×Dic6).9S3, C4.8(D6⋊S3), C12.55(C3⋊D4), (C6×C12).99C22, (C2×Dic3).21D6, (C6×Dic6).12C2, C33(Dic3⋊Q8), C62.C22.13C2, (C6×Dic3).80C22, C2.10(Dic3.D6), (C2×C4).116S32, (C3×C6).89(C2×D4), C6.77(C2×C3⋊D4), (C3×C6).24(C2×Q8), C22.100(C2×S32), (C4×C3⋊Dic3).3C2, C2.12(C2×D6⋊S3), (C2×C6).62(C22×S3), (C2×C3⋊Dic3).124C22, SmallGroup(288,521)

Series: Derived Chief Lower central Upper central

C1C62 — C62.43C23
C1C3C32C3×C6C62C6×Dic3C62.C22 — C62.43C23
C32C62 — C62.43C23
C1C22C2×C4

Generators and relations for C62.43C23
 G = < a,b,c,d,e | a6=b6=1, c2=d2=e2=b3, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc-1=b-1, bd=db, be=eb, dcd-1=a3c, ece-1=b3c, ede-1=b3d >

Subgroups: 458 in 151 conjugacy classes, 56 normal (10 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C6, C6, C2×C4, C2×C4, Q8, C32, Dic3, C12, C12, C2×C6, C2×C6, C42, C4⋊C4, C2×Q8, C3×C6, C3×C6, Dic6, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C3×Q8, C4⋊Q8, C3×Dic3, C3⋊Dic3, C3×C12, C62, C4×Dic3, Dic3⋊C4, C2×Dic6, C6×Q8, C3×Dic6, C6×Dic3, C2×C3⋊Dic3, C6×C12, Dic3⋊Q8, C62.C22, C4×C3⋊Dic3, C6×Dic6, C62.43C23
Quotients: C1, C2, C22, S3, D4, Q8, C23, D6, C2×D4, C2×Q8, C3⋊D4, C22×S3, C4⋊Q8, S32, S3×Q8, C2×C3⋊D4, D6⋊S3, C2×S32, Dic3⋊Q8, Dic3.D6, C2×D6⋊S3, C62.43C23

Smallest permutation representation of C62.43C23
On 96 points
Generators in S96
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)
(1 18 5 16 3 14)(2 13 6 17 4 15)(7 95 11 93 9 91)(8 96 12 94 10 92)(19 30 23 28 21 26)(20 25 24 29 22 27)(31 40 33 42 35 38)(32 41 34 37 36 39)(43 53 45 49 47 51)(44 54 46 50 48 52)(55 63 57 65 59 61)(56 64 58 66 60 62)(67 74 69 76 71 78)(68 75 70 77 72 73)(79 86 83 90 81 88)(80 87 84 85 82 89)
(1 64 16 60)(2 65 17 55)(3 66 18 56)(4 61 13 57)(5 62 14 58)(6 63 15 59)(7 51 93 45)(8 52 94 46)(9 53 95 47)(10 54 96 48)(11 49 91 43)(12 50 92 44)(19 76 28 67)(20 77 29 68)(21 78 30 69)(22 73 25 70)(23 74 26 71)(24 75 27 72)(31 90 42 79)(32 85 37 80)(33 86 38 81)(34 87 39 82)(35 88 40 83)(36 89 41 84)
(1 41 16 36)(2 40 17 35)(3 39 18 34)(4 38 13 33)(5 37 14 32)(6 42 15 31)(7 75 93 72)(8 74 94 71)(9 73 95 70)(10 78 96 69)(11 77 91 68)(12 76 92 67)(19 53 28 47)(20 52 29 46)(21 51 30 45)(22 50 25 44)(23 49 26 43)(24 54 27 48)(55 85 65 80)(56 90 66 79)(57 89 61 84)(58 88 62 83)(59 87 63 82)(60 86 64 81)
(1 27 16 24)(2 28 17 19)(3 29 18 20)(4 30 13 21)(5 25 14 22)(6 26 15 23)(7 86 93 81)(8 87 94 82)(9 88 95 83)(10 89 96 84)(11 90 91 79)(12 85 92 80)(31 43 42 49)(32 44 37 50)(33 45 38 51)(34 46 39 52)(35 47 40 53)(36 48 41 54)(55 67 65 76)(56 68 66 77)(57 69 61 78)(58 70 62 73)(59 71 63 74)(60 72 64 75)

G:=sub<Sym(96)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,95,11,93,9,91)(8,96,12,94,10,92)(19,30,23,28,21,26)(20,25,24,29,22,27)(31,40,33,42,35,38)(32,41,34,37,36,39)(43,53,45,49,47,51)(44,54,46,50,48,52)(55,63,57,65,59,61)(56,64,58,66,60,62)(67,74,69,76,71,78)(68,75,70,77,72,73)(79,86,83,90,81,88)(80,87,84,85,82,89), (1,64,16,60)(2,65,17,55)(3,66,18,56)(4,61,13,57)(5,62,14,58)(6,63,15,59)(7,51,93,45)(8,52,94,46)(9,53,95,47)(10,54,96,48)(11,49,91,43)(12,50,92,44)(19,76,28,67)(20,77,29,68)(21,78,30,69)(22,73,25,70)(23,74,26,71)(24,75,27,72)(31,90,42,79)(32,85,37,80)(33,86,38,81)(34,87,39,82)(35,88,40,83)(36,89,41,84), (1,41,16,36)(2,40,17,35)(3,39,18,34)(4,38,13,33)(5,37,14,32)(6,42,15,31)(7,75,93,72)(8,74,94,71)(9,73,95,70)(10,78,96,69)(11,77,91,68)(12,76,92,67)(19,53,28,47)(20,52,29,46)(21,51,30,45)(22,50,25,44)(23,49,26,43)(24,54,27,48)(55,85,65,80)(56,90,66,79)(57,89,61,84)(58,88,62,83)(59,87,63,82)(60,86,64,81), (1,27,16,24)(2,28,17,19)(3,29,18,20)(4,30,13,21)(5,25,14,22)(6,26,15,23)(7,86,93,81)(8,87,94,82)(9,88,95,83)(10,89,96,84)(11,90,91,79)(12,85,92,80)(31,43,42,49)(32,44,37,50)(33,45,38,51)(34,46,39,52)(35,47,40,53)(36,48,41,54)(55,67,65,76)(56,68,66,77)(57,69,61,78)(58,70,62,73)(59,71,63,74)(60,72,64,75)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,95,11,93,9,91)(8,96,12,94,10,92)(19,30,23,28,21,26)(20,25,24,29,22,27)(31,40,33,42,35,38)(32,41,34,37,36,39)(43,53,45,49,47,51)(44,54,46,50,48,52)(55,63,57,65,59,61)(56,64,58,66,60,62)(67,74,69,76,71,78)(68,75,70,77,72,73)(79,86,83,90,81,88)(80,87,84,85,82,89), (1,64,16,60)(2,65,17,55)(3,66,18,56)(4,61,13,57)(5,62,14,58)(6,63,15,59)(7,51,93,45)(8,52,94,46)(9,53,95,47)(10,54,96,48)(11,49,91,43)(12,50,92,44)(19,76,28,67)(20,77,29,68)(21,78,30,69)(22,73,25,70)(23,74,26,71)(24,75,27,72)(31,90,42,79)(32,85,37,80)(33,86,38,81)(34,87,39,82)(35,88,40,83)(36,89,41,84), (1,41,16,36)(2,40,17,35)(3,39,18,34)(4,38,13,33)(5,37,14,32)(6,42,15,31)(7,75,93,72)(8,74,94,71)(9,73,95,70)(10,78,96,69)(11,77,91,68)(12,76,92,67)(19,53,28,47)(20,52,29,46)(21,51,30,45)(22,50,25,44)(23,49,26,43)(24,54,27,48)(55,85,65,80)(56,90,66,79)(57,89,61,84)(58,88,62,83)(59,87,63,82)(60,86,64,81), (1,27,16,24)(2,28,17,19)(3,29,18,20)(4,30,13,21)(5,25,14,22)(6,26,15,23)(7,86,93,81)(8,87,94,82)(9,88,95,83)(10,89,96,84)(11,90,91,79)(12,85,92,80)(31,43,42,49)(32,44,37,50)(33,45,38,51)(34,46,39,52)(35,47,40,53)(36,48,41,54)(55,67,65,76)(56,68,66,77)(57,69,61,78)(58,70,62,73)(59,71,63,74)(60,72,64,75) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96)], [(1,18,5,16,3,14),(2,13,6,17,4,15),(7,95,11,93,9,91),(8,96,12,94,10,92),(19,30,23,28,21,26),(20,25,24,29,22,27),(31,40,33,42,35,38),(32,41,34,37,36,39),(43,53,45,49,47,51),(44,54,46,50,48,52),(55,63,57,65,59,61),(56,64,58,66,60,62),(67,74,69,76,71,78),(68,75,70,77,72,73),(79,86,83,90,81,88),(80,87,84,85,82,89)], [(1,64,16,60),(2,65,17,55),(3,66,18,56),(4,61,13,57),(5,62,14,58),(6,63,15,59),(7,51,93,45),(8,52,94,46),(9,53,95,47),(10,54,96,48),(11,49,91,43),(12,50,92,44),(19,76,28,67),(20,77,29,68),(21,78,30,69),(22,73,25,70),(23,74,26,71),(24,75,27,72),(31,90,42,79),(32,85,37,80),(33,86,38,81),(34,87,39,82),(35,88,40,83),(36,89,41,84)], [(1,41,16,36),(2,40,17,35),(3,39,18,34),(4,38,13,33),(5,37,14,32),(6,42,15,31),(7,75,93,72),(8,74,94,71),(9,73,95,70),(10,78,96,69),(11,77,91,68),(12,76,92,67),(19,53,28,47),(20,52,29,46),(21,51,30,45),(22,50,25,44),(23,49,26,43),(24,54,27,48),(55,85,65,80),(56,90,66,79),(57,89,61,84),(58,88,62,83),(59,87,63,82),(60,86,64,81)], [(1,27,16,24),(2,28,17,19),(3,29,18,20),(4,30,13,21),(5,25,14,22),(6,26,15,23),(7,86,93,81),(8,87,94,82),(9,88,95,83),(10,89,96,84),(11,90,91,79),(12,85,92,80),(31,43,42,49),(32,44,37,50),(33,45,38,51),(34,46,39,52),(35,47,40,53),(36,48,41,54),(55,67,65,76),(56,68,66,77),(57,69,61,78),(58,70,62,73),(59,71,63,74),(60,72,64,75)]])

42 conjugacy classes

class 1 2A2B2C3A3B3C4A4B4C4D4E4F4G4H4I4J6A···6F6G6H6I12A···12H12I···12P
order122233344444444446···666612···1212···12
size11112242212121212181818182···24444···412···12

42 irreducible representations

dim111122222244444
type+++++-++++--+
imageC1C2C2C2S3Q8D4D6D6C3⋊D4S32S3×Q8D6⋊S3C2×S32Dic3.D6
kernelC62.43C23C62.C22C4×C3⋊Dic3C6×Dic6C2×Dic6C3⋊Dic3C3×C12C2×Dic3C2×C12C12C2×C4C6C4C22C2
# reps141224242814214

Matrix representation of C62.43C23 in GL6(𝔽13)

100000
010000
0012100
0012000
0000120
0000012
,
1200000
0120000
001000
000100
0000121
0000120
,
1270000
910000
0012000
0001200
0000610
000037
,
1270000
910000
000100
001000
000029
0000411
,
1220000
1210000
0012000
0001200
000010
000001

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[12,9,0,0,0,0,7,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,6,3,0,0,0,0,10,7],[12,9,0,0,0,0,7,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,2,4,0,0,0,0,9,11],[12,12,0,0,0,0,2,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C62.43C23 in GAP, Magma, Sage, TeX

C_6^2._{43}C_2^3
% in TeX

G:=Group("C6^2.43C2^3");
// GroupNames label

G:=SmallGroup(288,521);
// by ID

G=gap.SmallGroup(288,521);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,112,141,120,422,219,100,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^6=1,c^2=d^2=e^2=b^3,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=a^3*c,e*c*e^-1=b^3*c,e*d*e^-1=b^3*d>;
// generators/relations

׿
×
𝔽